3.179 \(\int \frac{A+B x^2}{x^2 \sqrt{a+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=312 \[ \frac{\left (\sqrt{a}+\sqrt{c} x^2\right ) \left (\sqrt{a} B+A \sqrt{c}\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{2 a^{3/4} \sqrt [4]{c} \sqrt{a+b x^2+c x^4}}-\frac{A \sqrt [4]{c} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{a^{3/4} \sqrt{a+b x^2+c x^4}}-\frac{A \sqrt{a+b x^2+c x^4}}{a x}+\frac{A \sqrt{c} x \sqrt{a+b x^2+c x^4}}{a \left (\sqrt{a}+\sqrt{c} x^2\right )} \]

[Out]

-((A*Sqrt[a + b*x^2 + c*x^4])/(a*x)) + (A*Sqrt[c]*x*Sqrt[a + b*x^2 + c*x^4])/(a*(Sqrt[a] + Sqrt[c]*x^2)) - (A*
c^(1/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4
)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(a^(3/4)*Sqrt[a + b*x^2 + c*x^4]) + ((Sqrt[a]*B + A*Sqrt[c])*(Sqr
t[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)
], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(2*a^(3/4)*c^(1/4)*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.1314, antiderivative size = 312, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {1281, 1197, 1103, 1195} \[ \frac{\left (\sqrt{a}+\sqrt{c} x^2\right ) \left (\sqrt{a} B+A \sqrt{c}\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{2 a^{3/4} \sqrt [4]{c} \sqrt{a+b x^2+c x^4}}-\frac{A \sqrt [4]{c} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{a^{3/4} \sqrt{a+b x^2+c x^4}}-\frac{A \sqrt{a+b x^2+c x^4}}{a x}+\frac{A \sqrt{c} x \sqrt{a+b x^2+c x^4}}{a \left (\sqrt{a}+\sqrt{c} x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/(x^2*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

-((A*Sqrt[a + b*x^2 + c*x^4])/(a*x)) + (A*Sqrt[c]*x*Sqrt[a + b*x^2 + c*x^4])/(a*(Sqrt[a] + Sqrt[c]*x^2)) - (A*
c^(1/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4
)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(a^(3/4)*Sqrt[a + b*x^2 + c*x^4]) + ((Sqrt[a]*B + A*Sqrt[c])*(Sqr
t[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)
], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(2*a^(3/4)*c^(1/4)*Sqrt[a + b*x^2 + c*x^4])

Rule 1281

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*(
f*x)^(m + 1)*(a + b*x^2 + c*x^4)^(p + 1))/(a*f*(m + 1)), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + b
*x^2 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d,
 e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{A+B x^2}{x^2 \sqrt{a+b x^2+c x^4}} \, dx &=-\frac{A \sqrt{a+b x^2+c x^4}}{a x}-\frac{\int \frac{-a B-A c x^2}{\sqrt{a+b x^2+c x^4}} \, dx}{a}\\ &=-\frac{A \sqrt{a+b x^2+c x^4}}{a x}+\left (B+\frac{A \sqrt{c}}{\sqrt{a}}\right ) \int \frac{1}{\sqrt{a+b x^2+c x^4}} \, dx-\frac{\left (A \sqrt{c}\right ) \int \frac{1-\frac{\sqrt{c} x^2}{\sqrt{a}}}{\sqrt{a+b x^2+c x^4}} \, dx}{\sqrt{a}}\\ &=-\frac{A \sqrt{a+b x^2+c x^4}}{a x}+\frac{A \sqrt{c} x \sqrt{a+b x^2+c x^4}}{a \left (\sqrt{a}+\sqrt{c} x^2\right )}-\frac{A \sqrt [4]{c} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{a^{3/4} \sqrt{a+b x^2+c x^4}}+\frac{\left (\sqrt{a} B+A \sqrt{c}\right ) \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{2 a^{3/4} \sqrt [4]{c} \sqrt{a+b x^2+c x^4}}\\ \end{align*}

Mathematica [C]  time = 1.07488, size = 448, normalized size = 1.44 \[ \frac{-i x \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} \sqrt{\frac{-2 \sqrt{b^2-4 a c}+2 b+4 c x^2}{b-\sqrt{b^2-4 a c}}} \left (A \left (\sqrt{b^2-4 a c}-b\right )+2 a B\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{2} x \sqrt{\frac{c}{\sqrt{b^2-4 a c}+b}}\right ),\frac{\sqrt{b^2-4 a c}+b}{b-\sqrt{b^2-4 a c}}\right )-4 A \sqrt{\frac{c}{\sqrt{b^2-4 a c}+b}} \left (a+b x^2+c x^4\right )+i A x \left (\sqrt{b^2-4 a c}-b\right ) \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} \sqrt{\frac{-2 \sqrt{b^2-4 a c}+2 b+4 c x^2}{b-\sqrt{b^2-4 a c}}} E\left (i \sinh ^{-1}\left (\sqrt{2} \sqrt{\frac{c}{b+\sqrt{b^2-4 a c}}} x\right )|\frac{b+\sqrt{b^2-4 a c}}{b-\sqrt{b^2-4 a c}}\right )}{4 a x \sqrt{\frac{c}{\sqrt{b^2-4 a c}+b}} \sqrt{a+b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/(x^2*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

(-4*A*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*(a + b*x^2 + c*x^4) + I*A*(-b + Sqrt[b^2 - 4*a*c])*x*Sqrt[(b + Sqrt[b^2
- 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c]
)]*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a
*c])] - I*(2*a*B + A*(-b + Sqrt[b^2 - 4*a*c]))*x*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]
)]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(b +
 Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])])/(4*a*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])
]*x*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 386, normalized size = 1.2 \begin{align*}{\frac{B\sqrt{2}}{4}\sqrt{4-2\,{\frac{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ){x}^{2}}{a}}}\sqrt{4+2\,{\frac{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ){x}^{2}}{a}}}{\it EllipticF} \left ({\frac{x\sqrt{2}}{2}\sqrt{{\frac{1}{a} \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) }}},{\frac{1}{2}\sqrt{-4+2\,{\frac{b \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) }{ac}}}} \right ){\frac{1}{\sqrt{{\frac{1}{a} \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) }}}}{\frac{1}{\sqrt{c{x}^{4}+b{x}^{2}+a}}}}+A \left ( -{\frac{1}{ax}\sqrt{c{x}^{4}+b{x}^{2}+a}}-{\frac{c\sqrt{2}}{2}\sqrt{4-2\,{\frac{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ){x}^{2}}{a}}}\sqrt{4+2\,{\frac{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ){x}^{2}}{a}}} \left ({\it EllipticF} \left ({\frac{x\sqrt{2}}{2}\sqrt{{\frac{1}{a} \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) }}},{\frac{1}{2}\sqrt{-4+2\,{\frac{b \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) }{ac}}}} \right ) -{\it EllipticE} \left ({\frac{x\sqrt{2}}{2}\sqrt{{\frac{1}{a} \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) }}},{\frac{1}{2}\sqrt{-4+2\,{\frac{b \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) }{ac}}}} \right ) \right ){\frac{1}{\sqrt{{\frac{1}{a} \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) }}}}{\frac{1}{\sqrt{c{x}^{4}+b{x}^{2}+a}}} \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) ^{-1}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/x^2/(c*x^4+b*x^2+a)^(1/2),x)

[Out]

1/4*B*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)
^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2
*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))+A*(-1/a*(c*x^4+b*x^2+a)^(1/2)/x-1/2*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a
)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/
2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^
2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1
/2))/a/c)^(1/2))))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x^{2} + A}{\sqrt{c x^{4} + b x^{2} + a} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^2/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)/(sqrt(c*x^4 + b*x^2 + a)*x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + b x^{2} + a}{\left (B x^{2} + A\right )}}{c x^{6} + b x^{4} + a x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^2/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2 + a)*(B*x^2 + A)/(c*x^6 + b*x^4 + a*x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B x^{2}}{x^{2} \sqrt{a + b x^{2} + c x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/x**2/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral((A + B*x**2)/(x**2*sqrt(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x^{2} + A}{\sqrt{c x^{4} + b x^{2} + a} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^2/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)/(sqrt(c*x^4 + b*x^2 + a)*x^2), x)